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Recursion Invariants: Proving Partial Correctness

Recall theHANOI algorithm (given in Algorithm ; see [1, Ch. 1]. In this problem, have three towers, each
with a set of discs on them. The stacking rule is that all discs are a unique size, all disks are stacked on
towers, and no smaller disc is underneath a larger one.

Algorithm 1 HANOI(n, sre, dest, tmp)

Input: n € N, and three towers with disks: sre, dest, tmp such that [[See Q1 below]].
Output: [[See Q2 below]].

1: if n >0 then

2:  HaNoI(n — 1, sre, tmp, dest)

3:  move top disk from src to dest

4:  HANOI(n — 1, tmp, dest, src)

5: end if

1. Suppose we have n disks total. What are the assumptions on the input to the initial call HANOI(n, src, dest, tmp)?

Answer:

Going forward, we will call these assumptions P (for the preconditions).



2. What does it mean for HANOI(n, src, dest, tmp) to execute correctly? What does it return / what does
it need to accomplish?

Answer:

Going forward, we call this statement @ (for postcondition; the letter P was already taken).
3. For a general call to the recursive algorithm what are the assumptions on the input (For convenience,
suppose the call is: HANOI1(k, A, B, C)).

Answer:

Note: when making a recursive call, we must justify that we have met these conditions.

4. What is the recursion invariant?

The recursion invariant R is statement (i.e., a sentence that can be evaluated to TRUE/FALSE). In
particular, R is (in general) the statement, Each recursive call HANOI(k, A, B,C) executes correctly
and gets us closer to the end result. What does that mean in our case? Well, it means

e There are currently no violations of smaller disks on larger disks. (Note: the world would crumble
if this were violated at any time), AND
e the k smallest disks are now on B, AND
e 10 other disks besides the k smallest have moved (since we made this call).
We use the recursion invariant to prove INITIALIZATION, MAINTENANCE, and END. So, sometimes

we may see the invariant right away. Other times, we may need to try the proofs then revisit the
invariant (as we might realize that we forgot something).



5. INITTALIZATION This is like the base case of induction. Colloquially, we ask “Why is this true for
the smallest input?” (And, what are those inputs that would allow us to return without a recursive
call?) More formally, we can say: If ng = 0, then after the call to HANOI(ng, A, B, C), the recursion
invariant R is satisfied.

Answer:

Note: sometimes, just as in induction, there may be more than one base case.

6. MAINTENANCE: This part is JUST like the inductive step of induction. Let k € N such that k > ny.
Assume that, for all ¥ € N such that ng < k' < k, the recursion invariant R holds after a call to
HANOI(K', %, %, *). (That was the equivalent to the inductive assumption). Now, we must prove that R
holds after HaNo1(k + 1, A, B, C). (Hint: for this, we will almost always need to use the line numbers
as we walk through the algorithm to explain how the maintenance step works).

Answer:

7. END: This is where we diverge from induction. Because algorithms are finite, we can’t go on forever.
Colloquially, we say “if the initial call HANOI(n, src, dest, tmp) finishes executing, then all n disks
(which were initially on src) have moved to dst.” More formally, we can phrase this as: If the recursion
invariant holds, if the preconditions P are satisfied, and if the algorithm completes execution, then the
post-condition @ is satisfied. (For shorthand, I might write RAPAT = Q).

Answer:
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