TPy

Analysis of Algorithms: General Approach
CSCI 432
1L
November % 2023

Name: C \ GSS

Who did you work with today"‘
‘What algorithm are you analyzmg to

Whodrevee Fst SCO\VCN\ (NFS)

ex'. DFS (D> deptn)
RFES (B- \orradtn)

1 What? Rest FS

When analyzing algorithms, we first ask WHAT? That is, what is the problem that we want solved? Typically,
in this description, we need to understand both what are the inputs and what are the outputs of the algorithm.
When describing WHAT, it should be independent of HOW.

So, describe the WHAT for the algorithm you wish to analyze today.

What is the input?

Answer e‘.\ven: C—:\mpv\ el C\/ E\
(somes mas) Vo €V, “ve stort node

(§ondn<a)QUenﬁ geV L

i W opor given

What is the output? \) 1S O “(\ m A 7 V‘\g 0 e

o 6 PV\ (JILL ol briven|
Aovesel of e\ now do I T

o
M (& ‘N“ﬁ N7\ A Vo Yo Q)
Pmm Vo eve othe~ verex

Use the previous two answers to concisely describe what is the problem?
Answer

o~

2 How?

If you are presenting an algorithm, you should describe how it works in pseudocode. More importantly,
explain what is going on in the pseudocode in the prose text. The prose should point to the algorithm.
(Remember, in LaTex, algorithms are floating environments, so we need to be reminded to look at them.

WFS (W) glopal J o Shrchores
o X, push (V) > qupn 60

white. X #& “SJmclc/cLue,uﬂ. to
nodd

3: U é— K. pop N ﬁ?w%mx
Y: o s onnaried st o,

Answer

y: mark W Staw) |
G fso(‘ can e e‘corr\mmr\a A
£ posh (w

e BN €

8O'ften, it Jhelps tolwalk through small examples. If you came up with the algorithm, this is a nice sanity

check. If yoy are stu 3‘}1{1&1& ‘ggorithm given to you, this is helpful to better understand the algorithm.
Answer (
M/» \ i

p V. Whed DS do we wavk 1=
end | U ¥ we wad to do

DES ¢ RESAsTAC cwﬁgﬁc
32 What F T @rd aboodk ¥)
A patn Lonwr V de SOMZ&V.
3 How Fast? Bl iy B auﬁrvuvd —haas

5
What is the runtime? If this is a recursive algorithm, you are expected to explicitly state the recurrence (‘d% .
relation. ' LY\ \ 2 \

Answer Cps ex P : \j we

—Hme Complex L OV +E:'TB S\owt W
C
L gy o Lo e+ ' v
push / pop Jerer -
Sometimes, it is hard to pin down the runtime, yet we still want to ensure that the algorithm terminates. S‘m

For this, we use decrementing functions to prove that loops/recursions terminate. What is the decrementing o
.)

function for this algorithm?

Answer

¢ Xo Sw)
S
e ,/ ;

A
esv- \\N% qa\s

Justify (=prove) why function is well-defined. That is, why is the output of the function a natural
number?
Answer

Justify (=prove) why this decrements each time it reaches the top of the loop (or each time it goes into
a new recursive call).
Answer

4 Why? The Loop Invariant AY“CL‘ 21 g ‘e WhtLe

Finally, we prove why the algorithm works. Typically, this is done with-e“loop (or recursion) invariant. Here,
we focus on setting up the loop invariant. What are the following statements (start with yvour best guess,
then come back and revise if needed):

The loop guard G: X?é ¢ = é’l . %"1 (X#¢)

&Y X=@
The post-condition Q:
all verhiteo Ynave Yaeon ek ® /Asted

The pre-condition P: A s a ﬁm‘ph = CV:E)J v 6\[_
X = Tt °
unmarkeS
o)

The loop invariant L=Li: X 15 a “set” oqﬁ\/vcf‘h'cea ind A whnich therca
existy O Mared podny fwas V€V A

Can you use this loop invariant to prove partial correctness {Remember, there are three parts to partial
correctness: Initialization, Maintenance, and End).

Initialization (P =) L_)

Answer
“Thare exdr a RS patia f%% from Vo Ao
Since X= zVo},..v.Je_ Conclode. | (a)

Maintenance (L—; A C",\ ::'71_.{,}.\

Answer

End (L AnQ -:DQ)

Answer

