
11/2/2023

1

Greedy

CSCI 432

GreedyAlgorithms:

• Make the choice that best helps some objective.

• Do not look ahead, plan, or revisit past decisions.

• Hope that optimal local choices lead to optimal
global solutions.

GreedyAlgorithms:

• Make the choice that best helps some objective.

• Do not look ahead, plan, or revisit past decisions.

• Hope that optimal local choices lead to optimal
global solutions.

Greedy algorithm for:

• Robbing a jewelry store?

• Eating at a fancy buffet?

• Triaging buddy after failed cornice huck?

11/2/2023

2

Activity Selection

Input:
• = 1,2,… , – set of courses that need rooms.
• = (,) – start and finish times for each course.

Activity Selection

Input:
• = 1,2,… , – set of courses that need rooms.
• = (,) – start and finish times for each course.

Rules:

• and are compatible if , and , do not overlap.

Activity Selection

Input:
• = 1,2,… , – set of courses that need rooms.
• = (,) – start and finish times for each course.

Rules:

• and are compatible if , and , do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

11/2/2023

3

Activity Selection

Input:
• = 1,2,… , – set of courses that need rooms.
• = (,) – start and finish times for each course.

Rules:

• and are compatible if , and , do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

 1 2 3 4 5

 1 3 4 5 7

 3 5 6 7 9

Activity Selection

Input:
• = 1,2,… , – set of courses that need rooms.
• = (,) – start and finish times for each course.

Rules:

• and are compatible if , and , do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

 1 2 3 4 5

 1 3 4 5 7

 3 5 6 7 9

Activity Selection

Input:
• = 1,2,… , – set of courses that need rooms.
• = (,) – start and finish times for each course.

Rules:

• and are compatible if , and , do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

 1 2 3 4 5

 1 3 4 5 7

 3 5 6 7 9

11/2/2023

4

Activity Selection

Input:
• = 1,2,… , – set of courses that need rooms.
• = (,) – start and finish times for each course.

Rules:

• and are compatible if , and , do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

Greedy selection criteria?

Algorithm Outline?

 1 2 3 4 5

 1 3 4 5 7

 3 5 6 7 9

Activity Selection

Input:
• = 1,2,… , – set of courses that need rooms.
• = (,) – start and finish times for each course.

Rules:

• and are compatible if , and , do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

Greedy decision?
Smallest duration
first.

Activity Selection

Input:
• = 1,2,… , – set of courses that need rooms.
• = (,) – start and finish times for each course.

Rules:

• and are compatible if , and , do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

Greedy decision?
Smallest duration
first.

11/2/2023

5

Activity Selection

Input:
• = 1,2,… , – set of courses that need rooms.
• = (,) – start and finish times for each course.

Rules:

• and are compatible if , and , do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

Greedy decision?
Smallest conflict
first.

Activity Selection

Input:
• = 1,2,… , – set of courses that need rooms.
• = (,) – start and finish times for each course.

Rules:

• and are compatible if , and , do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

Greedy decision?
Smallest conflict
first.

3 3 3 3

4

4

4

4

4

4

2

Activity Selection

Input:
• = 1,2,… , – set of courses that need rooms.
• = (,) – start and finish times for each course.

Rules:

• and are compatible if , and , do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

Greedy decision?
Earliest compatible
finish time first.

11/2/2023

6

Activity Selection

activity_selection(activities A)

sort_by_finish(A)

selected = {A[1]}

last_added = 1

for i = 2 to A.length

if A[i].start ≥ A[last_added].finish

selected = selected ∪ {A[i]}

last_added = i

return selected
 1 2 3 4 5

 1 3 4 5 7

 3 5 6 7 9

Activity Selection

activity_selection(activities A)

sort_by_finish(A)

selected = {A[1]}

last_added = 1

for i = 2 to A.length

if A[i].start ≥ A[last_added].finish

selected = selected ∪ {A[i]}

last_added = i

return selected

Running Time?

Validity?

Performance?

 1 2 3 4 5

 1 3 4 5 7

 3 5 6 7 9

Activity Selection

activity_selection(activities A)

sort_by_finish(A)

selected = {A[1]}

last_added = 1

for i = 2 to A.length

if A[i].start ≥ A[last_added].finish

selected = selected ∪ {A[i]}

last_added = i

return selected

Running Time? log

Validity?

Performance?

 1 2 3 4 5

 1 3 4 5 7

 3 5 6 7 9

11/2/2023

7

Activity Selection

activity_selection(activities A)

sort_by_finish(A)

selected = {A[1]}

last_added = 1

for i = 2 to A.length

if A[i].start ≥ A[last_added].finish

selected = selected ∪ {A[i]}

last_added = i

return selected

Running Time? log

Validity? selected consists

of compatible courses.

Performance?

 1 2 3 4 5

 1 3 4 5 7

 3 5 6 7 9

Activity Selection

activity_selection(activities A)

sort_by_finish(A)

selected = {A[1]}

last_added = 1

for i = 2 to A.length

if A[i].start ≥ A[last_added].finish

selected = selected ∪ {A[i]}

last_added = i

return selected

Running Time? log

Validity? selected consists

of compatible courses.

Performance? Is selected

the largest possible subset?

 1 2 3 4 5

 1 3 4 5 7

 3 5 6 7 9

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality:

11/2/2023

8

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let be the set of courses, ⊆ be the greedy algorithm selection,

and ⊆ be an optimal selection, all sorted by increasing finish time.

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let be the set of courses, ⊆ be the greedy algorithm selection,

and ⊆ be an optimal selection, all sorted by increasing finish time.

 = [] , since that is the greedy choice. Suppose [] ≠ [] (i.e. the optimal

solution does not start with the greedy choice).

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let be the set of courses, ⊆ be the greedy algorithm selection,

and ⊆ be an optimal selection, all sorted by increasing finish time.

 = [] , since that is the greedy choice. Suppose [] ≠ [] (i.e. the optimal

solution does not start with the greedy choice).

What would happen if you replaced [] with [] in the optimal solution?

11/2/2023

9

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let be the set of courses, ⊆ be the greedy algorithm selection,

and ⊆ be an optimal selection, all sorted by increasing finish time.

 = [] , since that is the greedy choice. Suppose [] ≠ [] (i.e. the optimal

solution does not start with the greedy choice).

What would happen if you replaced [] with [] in the optimal solution?

: [] …
…: []

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let be the set of courses, ⊆ be the greedy algorithm selection,

and ⊆ be an optimal selection, all sorted by increasing finish time.

 = [] , since that is the greedy choice. Suppose [] ≠ [] (i.e. the optimal

solution does not start with the greedy choice).

Replacing [] with [] must also be an optimal solution:

: [] …
…: []

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let be the set of courses, ⊆ be the greedy algorithm selection,

and ⊆ be an optimal selection, all sorted by increasing finish time.

 = [] , since that is the greedy choice. Suppose [] ≠ [] (i.e. the optimal

solution does not start with the greedy choice).

Replacing [] with [] must also be an optimal solution: If every course in is

compatible with [] (i.e. they all start after [0]), …

: [] …
…: []

 []

11/2/2023

10

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let be the set of courses, ⊆ be the greedy algorithm selection,

and ⊆ be an optimal selection, all sorted by increasing finish time.

 = [] , since that is the greedy choice. Suppose [] ≠ [] (i.e. the optimal

solution does not start with the greedy choice).

Replacing [] with [] must also be an optimal solution: If every course in is

compatible with [] (i.e. they all start after [0]), they must be also be compatible

with [] since [0]≤ [0].

: [] …
…: []

 []

[]

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let be the set of courses, ⊆ be the greedy algorithm selection,

and ⊆ be an optimal selection, all sorted by increasing finish time.

 = [] , since that is the greedy choice. Suppose [] ≠ [] (i.e. the optimal

solution does not start with the greedy choice).

Replacing [] with [] must also be an optimal solution: If every course in is

compatible with [] (i.e. they all start after [0]), they must be also be compatible

with [] since [0]≤ [0]. Thus, = ∖ [] ∪ [] is also optimal.

:

: [] …
…: []

…[]

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let be the set of courses, ⊆ be the greedy algorithm selection,

and ⊆ be an optimal selection, all sorted by increasing finish time.

 = [] , since that is the greedy choice. Suppose [] ≠ [] (i.e. the optimal

solution does not start with the greedy choice).

Replacing [] with [] must also be an optimal solution: If every course in is

compatible with [] (i.e. they all start after [0]), they must be also be compatible

with [] since [0]≤ [0]. Thus, = ∖ [] ∪ [] is also optimal.

What happens if we now replace [] with []?

:

: [] …
…:

…[]

11/2/2023

11

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let be the set of courses, ⊆ be the greedy algorithm selection,

and ⊆ be an optimal selection, all sorted by increasing finish time.

 = [] , since that is the greedy choice. Suppose [] ≠ [] (i.e. the optimal

solution does not start with the greedy choice).

Replacing [] with [] must also be an optimal solution: If every course in is

compatible with [] (i.e. they all start after [0]), they must be also be compatible

with [] since [0]≤ [0]. Thus, = ∖ [] ∪ [] is also optimal.

What happens if we now replace [] with []? We know that [] is compatible with

[].

: [] …

: [][]

[]

…

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let be the set of courses, ⊆ be the greedy algorithm selection,

and ⊆ be an optimal selection, all sorted by increasing finish time.

 = [] , since that is the greedy choice. Suppose [] ≠ [] (i.e. the optimal

solution does not start with the greedy choice).

Replacing [] with [] must also be an optimal solution: If every course in is

compatible with [] (i.e. they all start after [0]), they must be also be compatible

with [] since [0]≤ [0]. Thus, = ∖ [] ∪ [] is also optimal.

What happens if we now replace [] with []? We know that [] is compatible with

[]. We also know that [] is compatible with [], since 1 ≤ [1] (otherwise

 [] would be in since it is compatible with [] and includes the one that ends
earliest).

: [] …

: [] …

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let be the set of courses, ⊆ be the greedy algorithm selection,

and ⊆ be an optimal selection, all sorted by increasing finish time.

 = [] , since that is the greedy choice. Suppose [] ≠ [] (i.e. the optimal

solution does not start with the greedy choice).

Replacing [] with [] must also be an optimal solution: If every course in is

compatible with [] (i.e. they all start after [0]), they must be also be compatible

with [] since [0]≤ [0]. Thus, = ∖ [] ∪ [] is also optimal.

What happens if we now replace [] with []? We know that [] is compatible with

[]. We also know that [] is compatible with [], since 1 ≤ 1 and 1 ≤

 2 , since they are both in OPT.

: [] …

: [] …

11/2/2023

12

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let be the set of courses, ⊆ be the greedy algorithm selection,

and ⊆ be an optimal selection, all sorted by increasing finish time.

 = [] , since that is the greedy choice. Suppose [] ≠ [] (i.e. the optimal

solution does not start with the greedy choice).

Replacing [] with [] must also be an optimal solution: If every course in is

compatible with [] (i.e. they all start after [0]), they must be also be compatible

with [] since [0]≤ [0]. Thus, = ∖ [] ∪ [] is also optimal.

What happens if we now replace [] with []? We know that [] is compatible with

[]. We also know that [] is compatible with [], since 1 ≤ [1] ≤ [2].

: [] …

: …[] []

[]

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let be the set of courses, ⊆ be the greedy algorithm selection,

and ⊆ be an optimal selection, all sorted by increasing finish time.

 = [] , since that is the greedy choice. Suppose [] ≠ [] (i.e. the optimal

solution does not start with the greedy choice).

Replacing [] with [] must also be an optimal solution: If every course in is

compatible with [] (i.e. they all start after [0]), they must be also be compatible

with [] since [0]≤ [0]. Thus, = ∖ [] ∪ [] is also optimal.

What happens if we now replace [] with []? We know that [] is compatible with

[]. We also know that [] is compatible with [], since 1 ≤ [1] ≤ [2].

Thus, ′′ = ∖ , ∪ { , } is also optimal.

: [] …

: …[] []

[]

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let be the set of courses, ⊆ be the greedy algorithm selection,

and ⊆ be an optimal selection, all sorted by increasing finish time.

 = [] , since that is the greedy choice. Suppose [] ≠ [] (i.e. the optimal

solution does not start with the greedy choice).

Replacing [] with [] must also be an optimal solution: If every course in is

compatible with [] (i.e. they all start after [0]), they must be also be compatible

with [] since [0]≤ [0]. Thus, = ∖ [] ∪ [] is also optimal.

What happens if we now replace [] with []? We know that [] is compatible with

[]. We also know that [] is compatible with [], since 1 ≤ [1] ≤ [2].

Thus, ′′ = ∖ , ∪ { , } is also optimal.

We can then proceed inductively and show that each course in OPT can be replaced by the
corresponding course in S without violating compatibility restrictions. i.e., We translated

 into at no extra cost, thus must be optimal.

