Greedy
CSCl 432

11/2/2023

Greedy Algorithms:

* Make the choice that best helps some objective.

* Do not look ahead, plan, or revisit past decisions.

* Hope that optimal local choices lead to optimal
global solutions.

GreedyAlgorithms:

* Make the choice that best helps some objective.

* Do not look ahead, plan, or revisit past decisions.

* Hope that optimal local choices lead to optimal
global solutions.
Greedy algorithm for:
* Robbing a jewelry store?
* Eating at a fancy buffet?
* Triaging buddy after failed cornice huck?

Activity Selection

Input:
+ S ={ay,a,, ..., a,} - setof courses that need rooms.
* a; = (S, f;) — start and finish times for each course.

11/2/2023

Activity Selection

Input:
+ 5 ={ay,a, ..., a,}—setof courses that need rooms.
* a; = (S, f;) —start and finish times for each course.
Rules:
* a;and a; are compatible if [s; £ and [sj,fj) do not overlap.

Activity Selection

Input:
S = {al,az, an}— set of courses that need rooms.
* a; = (s; f;) — start and finish times for each course.
Rules:
* a;anda; are compatible if [si, fi) and [s]-,f,-) do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

Activity Selection

Input:
+ S ={ay,a,, ..., a,} - setof courses that need rooms.
* a; = (S, f;) — start and finish times for each course.
Rules:
* a;and a; are compatible if [s; fi) and [s]f]) do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

i |

si|13457 [z]
[@] [@3] [@5]

fil3 5 6 7 9

11/2/2023

Activity Selection

Input:
+ S ={aya, ..., a,}—setof courses that need rooms.
* a; = (S, f;) — start and finish times for each course.
Rules:
* a;and a; are compatible if [s; £ and [sj,fj) do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

i a2 34
1 34 s
o @] [@3] [@5]
fil3 s e 7 le

Activity Selection

Input:
+ § ={ay,a,..., a,} - setof courses that need rooms.
* a; = (s; f;) — start and finish times for each course.
Rules:
* a;anda; are compatible if [si, fi) and [s]-,f,-) do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

i a2 s [a s -
si |1 3|4 5 7 @ @z
fil3 5 617 9

Activity Selection

Input:
+ S ={ay,a,, ..., a,} - setof courses that need rooms.
* a; = (S, f;) — start and finish times for each course.
Rules:
* a;and a; are compatible if [s; fi) and [s]f]) do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

) Greedy selection criteria®?
il 2 3 4 s

Si 1 3 4 5 7

fi|3 5 6 7 9 Algorithm Outline

11/2/2023

Activity Selection

Input:
+ 5 ={ay,a, ..., a,}—setof courses that need rooms.
* a; = (S, f;) —start and finish times for each course.
Rules:
* a;and a; are compatible if [s; £ and [sj,fj) do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

Greedy decision?
Smallest duration
first.

Activity Selection

Input:
+ § ={ay,a,..., a,} - setof courses that need rooms.
* a; = (s; f;) — start and finish times for each course.
Rules:
* a;anda; are compatible if [si, fi) and [s]-,f,-) do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

Smallest duration
first.

Greedy decision?
- Y

Activity Selection

Input:
+ S ={ay,a,, ..., a,} - setof courses that need rooms.
* a; = (S, f;) — start and finish times for each course.
Rules:
* a;and a; are compatible if [s; f;) and [s,f]) do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

Greedy decision?
Smallest conflict
first.

11/2/2023

Activity Selection

Input:
+ 5 ={ay,a, ..., a,}—setof courses that need rooms.
* a; = (S, f;) —start and finish times for each course.
Rules:
* a;and a; are compatible if [s; £ and [sj,fj) do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

I D N N [Greedy decision?
- - - Smallest conflict
- - first.

Activity Selection

Input:
+ § ={ay,a,..., a,} - setof courses that need rooms.
* a; = (s; f;) — start and finish times for each course.
Rules:
* a;anda; are compatible if [si, ﬁ) and [sj,f,-) do not overlap.

Goal: Select a maximum sized subset of mutually compatible courses.

Greedy decision?
Earliest compatible
finish time first.

Activity Selection

activity_selection(activities A)

sort_by_finish(A)

selected = {A[1]}

last_added = 1

for i = 2 to A.length

if A[i].start > A[last_added] .finish

selected = selected u {A[i]}
last_added = i

11/2/2023

return selected ! | o2 3 4
ss |1 3 4 5
fil3 s 6 7 9

Activity Selection

Running Time?

activity_selection(activities A) Validity?
sort_by_finish(A)
selected = {A[1]}
last_added = 1
for i = 2 to A.length
if A[i].start > A[last_added] .finish
selected = selected u {A[i]}
last_added = i)
return selected |

Performance?

Activity Selection

Running Time? O(nlogn)

activity_selection(activities A) Validity?
sort_by_finish(A)
selected = {A[1]}
last_added = 1
for i = 2 to A.length
if A[i].start > A[last_added] .finish
selected = selected u {A[i]}
last_added = i)
return selected ! |

Performance?

11/2/2023

Activity Selection

Running Time? O(nlogn)

activity_selection(activities A) Validity? selected consists
sort_by_finish(A) of compatible courses.
selected = {A[1]}
last_added = 1
for i = 2 to A.length
if A[i].start > A[last_added] .finish
selected = selected u {A[i]}
last_added = i)
return selected ! |

Performance?

Activity Selection

Running Time? O(nlogn)

activity_selection(activities A) Validity? selected consists
sort_by_finish(A) of compatible courses.
selected = {A[1]}
last_added = 1
for i = 2 to A.length
if A[i].start > A[last_added] .finish
selected = selected u {A[i]}
last_added = i)
return selected |

Performance? Is selected
the largest possible subset?

Activity Selection

Greedv_decision: Select the next course with the earliest compatible finish time.

Proof of optimality:

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let A be the set of courses, S S A be the greedy algorithm selection,
and OPT < A be an optimal selection, all sorted by increasing finish time.

11/2/2023

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let A be the set of courses, S € A be the greedy algorithm selection,
and OPT < A be an optimal selection, all sorted by increasing finish time.

S[0] = A[0], since that is the greedy choice. Suppose OPT [0] # A[0] (i.e. the optimal
solution does not start with the greedy choice).

Activity Selection
Greedv_decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let A be the set of courses, S € A be the greedy algorithm selection,
and OPT < A be an optimal selection, all sorted by increasing finish time.

S[0] = A[0], since that is the greedy choice. Suppose OPT[0] # A[0] (i.e. the optimal
solution does not start with the greedy choice).

What would happen if you replaced OPT [0] with S[0] in the optimal solution@

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let A be the set of courses, S S A be the greedy algorithm selection,
and OPT < A be an optimal selection, all sorted by increasing finish time.

S[0] = A[0], since that is the greedy choice. Suppose OPT [0] # A[0] (i.e. the optimal
solution does not start with the greedy choice).

What would happen if you replaced OPT [0] with S[0] in the optimal solution?

opT: [T I [N -
2N el [—

11/2/2023

Activity Selection

Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let A be the set of courses, S € A be the greedy algorithm selection,
and OPT < A be an optimal selection, all sorted by increasing finish time.

S[0] = A[0], since that is the greedy choice. Suppose OPT [0] # A[0] (i.e. the optimal
solution does not start with the greedy choice).

Replacing OPT [0] with A[0] must also be an optimal solution:

orr: [HoPTOINIEE BN (] D . -
s: EEE[C)N /T -

Activity Selection

Greedv_decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let A be the set of courses, S € A be the greedy algorithm selection,
and OPT < A be an optimal selection, all sorted by increasing finish time.

S[0] = A[0], since that is the greedy choice. Suppose OPT[0] # A[0] (i.e. the optimal
solution does not start with the greedy choice).

Replacing OPT [0] with A[0] must also be an optimal solution: If every course in OPT is
compatible with OPT[0] (i.e. they all start after foprq)), ..

forro]

|
opT: [CETOI I I [. -
s EEEC_ BN m] -

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let A be the set of courses, S S A be the greedy algorithm selection,
and OPT < A be an optimal selection, all sorted by increasing finish time.

S[0] = A[0], since that is the greedy choice. Suppose OPT [0] # A[0] (i.e. the optimal
solution does not start with the greedy choice).

Replacing OPT [0] with A[0] must also be an optimal solution: If every course in OPT is
compatible with OPT[0] (i.e. they all start after fopr(o)), they must be also be compatible
with S[0] since fs(o) < forr[o]-

opr[0]

|
opr: [CPO N 1 [N I -
s EEEC_) N ECo -

f: sIo]

11/2/2023

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let A be the set of courses, S € A be the greedy algorithm selection,
and OPT < A be an optimal selection, all sorted by increasing finish time.

S[0] = A[0], since that is the greedy choice. Suppose OPT [0] # A[0] (i.e. the optimal
solution does not start with the greedy choice).

Replacing OPT [0] with A[0] must also be an optimal solution: If every course in OPT is
compatible with OPT[0] (i.e. they all start after fopr[o7), they must be also be compatible
with S[0] since fsjo] < foprio). Thus, OPT' = OPT \ OPT[0] U S[0]is also optimal.

opr: [UEEIEE N [I -
s EEEC) BN o -

orr: [N N N () I I -

Activity Selection
Greedv_decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let A be the set of courses, S € A be the greedy algorithm selection,
and OPT < A be an optimal selection, all sorted by increasing finish time.

S[0] = A[0], since that is the greedy choice. Suppose OPT[0] # A[0] (i.e. the optimal
solution does not start with the greedy choice).

Replacing OPT [0] with A[0] must also be an optimal solution: If every course in OPT is
compatible with OPT[0] (i.e. they all start after fopr(o)), they must be also be compatible
with S[0] since fsi0) < fopr(o)- Thus, OPT' = OPT \ OPT[0] U S[0]is also optimal.

What happens if we now replace OPT [1] with S[l]

opr: I B .
s: e -
oPT': EE [

10

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let A be the set of courses, S S A be the greedy algorithm selection,
and OPT < A be an optimal selection, all sorted by increasing finish time.

S[0] = A[0], since that is the greedy choice. Suppose OPT [0] # A[0] (i.e. the optimal
solution does not start with the greedy choice).

Replacing OPT [0] with A[0] must also be an optimal solution: If every course in OPT is
compatible with OPT[0] (i.e. they all start after fopr(o)), they must be also be compatible
with S[0] since fsjo) < fopr(o). Thus, OPT' = OPT \ OPT[0] U S[0]is also optimal.

What happens if we now replace OPT[1] with S[1]? We know that S[1] is compatible with
s[o].

(ol [—

OPT’: |G [N (N [| N N -

11/2/2023

Activity Selection

Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let A be the set of courses, S € A be the greedy algorithm selection,
and OPT < A be an optimal selection, all sorted by increasing finish time.

S[0] = A[0], since that is the greedy choice. Suppose OPT [0] # A[0] (i.e. the optimal
solution does not start with the greedy choice).

Replacing OPT [0] with A[0] must also be an optimal solution: If every course in OPT is
compatible with OPT[0] (i.e. they all start after fopr[o7), they must be also be compatible
with S[0] since fsjo] < foprio). Thus, OPT' = OPT \ OPT[0] U S[0]is also optimal.

What happens if we now replace OPT [1] with S[1]? We know that S [1]is compatible with
S[0]. We also know that S[1] is compatible with OPT [2], since fs(1] < fopr[1] (otherwise
OPT[1] would bein S sinceitiscompatible with S[0] and Sincludes the one that ends

R (wonll N o —

orr: [N I [() I -

Activity Selection

Greedv_decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let A be the set of courses, S € A be the greedy algorithm selection,
and OPT < A be an optimal selection, all sorted by increasing finish time.

S[0] = A[0], since that is the greedy choice. Suppose OPT[0] # A[0] (i.e. the optimal
solution does not start with the greedy choice).

Replacing OPT [0] with A[0] must also be an optimal solution: If every course in OPT is
compatible with OPT[0] (i.e. they all start after fopr(o)), they must be also be compatible
with S[0] since fsi0) < fopr(o)- Thus, OPT' = OPT \ OPT[0] U S[0]is also optimal.

What happens if we now replace OPT [1] with S[1]? We know that S [1] is compatible with
S[0]. We also know that S[1] is compatible with OPT [2], since fs{1] < fopr(1] and fopr(1] <
SopTl2], since they are both in OPT

S:
OPT':

11

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let A be the set of courses, S S A be the greedy algorithm selection,
and OPT < A be an optimal selection, all sorted by increasing finish time.

S[0] = A[0], since that is the greedy choice. Suppose OPT [0] # A[0] (i.e. the optimal
solution does not start with the greedy choice).

Replacing OPT [0] with A[0] must also be an optimal solution: If every course in OPT is
compatible with OPT[0] (i.e. they all start after fopr(o)), they must be also be compatible
with S[0] since fsjo) < fopr(o). Thus, OPT' = OPT \ OPT[0] U S[0]is also optimal.

What happens if we now replace OPT[1] with S[1]? We know that S[1] is compatible with
S[0]. We also know that S[1] is compatible with OPT [2], since fs(1] < fopr[1] < Sopr [2]-

SO Twenll [—
opr: NN [() I . -

11/2/2023

Activity Selection
Greedy decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let A be the set of courses, S € A be the greedy algorithm selection,
and OPT < A be an optimal selection, all sorted by increasing finish time.

S[0] = A[0], since that is the greedy choice. Suppose OPT [0] # A[0] (i.e. the optimal
solution does not start with the greedy choice).

Replacing OPT [0] with A[0] must also be an optimal solution: If every course in OPT is
compatible with OPT[0] (i.e. they all start after fopr[o7), they must be also be compatible
with S[0] since fsjo] < foprio). Thus, OPT' = OPT \ OPT[0] U S[0]is also optimal.

What happens if we now replace OPT [1] with S[1]? We know that S [1]is compatible with
S[0]. We also know that S[1] is compatible with OPT[2], since fs(1] < forr(1] < Sopr [2]-
Thus, OPT" = OPT \ {0PT[0], 0PT[1]} u{S[0], S[1]} is also optimal.

OO lwenfl B ——
opr: [ENE [() I -

Activity Selection
Greedv_decision: Select the next course with the earliest compatible finish time.

Proof of optimality: Let A be the set of courses, S € A be the greedy algorithm selection,
and OPT < A be an optimal selection, all sorted by increasing finish time.

S[0] = A[0], since that is the greedy choice. Suppose OPT[0] # A[0] (i.e. the optimal
solution does not start with the greedy choice).

Replacing OPT [0] with A[0] must also be an optimal solution: If every course in OPT is
compatible with OPT[0] (i.e. they all start after fopr(o)), they must be also be compatible
with S[0] since fsi0) < fopr(o)- Thus, OPT' = OPT \ OPT[0] U S[0]is also optimal.

What happens if we now replace OPT [1] with S[1]? We know that S [1] is compatible with
S[0]. We also know that S[1] is compatible with OPT[2], since fs[1] < fopr[1] < Sopr [2]-
Thus, OPT" = 0PT \ {0PT[0], 0PT[1]} u{S[0], S[1]} is also optimal.

We can then proceed inductively and show that each course in OPT can be replaced by the
corresponding course in S without violating compatibility restrictions. i.e., We translated
OPT into S at no extra cost, thus S must be optimal.

12

