In-Class Exercise 05

CSCI 432

13 September 2023

Name(s):

If not handing in as one group, who did you work with today?

Master's Theorem

Master's theorem allows us to quickly solve recurrence relations of the form:

$$
T(n)=a T(n / b)+f(n)
$$

where $a, b \in \mathbb{N}$ such that $a \geq 1$ and $b>0$ and $f(n)$ is asymptotically positive. Then, we can determine the closed-form of $T(n)$ as follows:

1. IF there exists $\varepsilon \in \mathbb{R}_{+}$such that $f(n) \in O\left(n^{\log _{b} a-\varepsilon}\right)$, THEN $T(n) \in \Theta\left(n^{\log _{b} a}\right)$.
2. IF there exists $\varepsilon \in \mathbb{R}_{+}$such that $f(n) \in \Theta\left(n^{\log _{b} a}\right)$, THEN $T(n) \in \Theta\left(n^{\log _{b} a} \log n\right)$.
3. IF
(a) there exists $\varepsilon \in \mathbb{R}_{+}$such that $f(n) \in \Omega\left(n^{\log _{b} a+\varepsilon}\right)$ and
(b) there exists $c \in(0,1)$ and $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$, the following holds: $a f(n / b) \leq c f(n)$, THEN $T(n) \in \Theta(f(n))$.

	a	b	$\log _{b} a$	$n^{\log _{b} a}$	$f(n)$	Potential Case?	ε, if Case 1 or 3	Closed Form
$T(n)=T(n / 2)+1$								
$T(n)=2 T(n / 4)+\sqrt{n}$								
$T(n)=2 T(n / 4)+n$								
$T(n)=2 T(n / 4)+n^{2}$								
$T(n)=3 T(n / 3)+\Theta(1)$								

Remember, Case 3 has an additional condition to check (this condition is called the regularity condition)! Do that in the space provided below, or on the back of this page.

