In-Class Exercise 05

$\mathrm{CSCI}\ 432$

13 September 2023

Name(s):

If not handing in as one group, who did you work with today?

Master's Theorem

Master's theorem allows us to quickly solve recurrence relations of the form:

$$T(n) = aT(n/b) + f(n),$$

where $a, b \in \mathbb{N}$ such that $a \ge 1$ and b > 0 and f(n) is asymptotically positive. Then, we can determine the closed-form of T(n) as follows:

- 1. IF there exists $\varepsilon \in \mathbb{R}_+$ such that $f(n) \in O(n^{\log_b a \varepsilon})$, THEN $T(n) \in \Theta(n^{\log_b a})$.
- 2. IF there exists $\varepsilon \in \mathbb{R}_+$ such that $f(n) \in \Theta(n^{\log_b a})$, THEN $T(n) \in \Theta(n^{\log_b a} \log n)$.
- 3. IF
 - (a) there exists $\varepsilon \in \mathbb{R}_+$ such that $f(n) \in \Omega(n^{\log_b a + \varepsilon})$ and

(b) there exists $c \in (0,1)$ and $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$, the following holds: $af(n/b) \le cf(n)$,

THEN $T(n) \in \Theta(f(n))$.

	a	b	$\log_b a$	$n^{\log_b a}$	f(n)	Potential Case?	ε , if Case 1 or 3	Closed Form
T(n) = T(n/2) + 1								
$T(n) = 2T(n/4) + \sqrt{n}$								
T(n) = 2T(n/4) + n								
$T(n) = 2T(n/4) + n^2$								
$T(n) = 3T(n/3) + \Theta(1)$								

Remember, Case 3 has an additional condition to check (this condition is called the *regularity condition*)! Do that in the space provided below, or on the back of this page.